Chapter 8:
- Classes and Objects

Lecture outline

= the keyword t hi s
= multiple constructors

= static fields and methods in a class

=3}

~____ Copyright 2006 by Pearson Education

| s
Copyright 2006 by Pearson Education

Using the keyword t hi s

=t his : A reference to the implicit parameter.
« Implicit parameter: object on which a method/constructor is called

= t hi s keyword, general syntax:

= 10 refer to a field:
t hi s. <field name>

= To call a method:
t hi s. <method name>(<parameters>) ;

= 10 call a constructor from another constructor:
t hi s(<parameters>) ;

—

~ Copyright 2006 by Pearson Education 4

—

Variable names and scope

= Usually it is illegal to have two variables in the same
scope with the same name.

= Recall: Poi nt class's set Locati on method:
» Params named newX and newY to be distinct from fields x and y

public class Point {
| Nt X;
| nt vy,

publ | c void setLocation(int newX Int newYy) {
1 f (newX < 0 || newY < 0) {

t hrow new ||| egal Argunent Exception();
}
X = newx;
y = newy,

}

—

~ Copyright 2006 by Pearson Education

—

Variable shadowing

= However, a class's method can have a parameter whose
name is the same as one of the class's fields.
= Example:

/] this is |egal
public void setLocation(int x, int y) {

}

» Fields x and y are shadowed by parameters with same names.

= Any set Locat i on code that refers to x or y will use the
parameter, not the field.

= shadowed variable: A field that is "covered up" by a
parameter or local variable with the same name.

—

= P

~ Copyright 2006 by Pearson Education 6

—

Avoiding shadowing with t hi s

= The keyword t hi s prevents shadowing:

public class Point {
private I nt Xx;
private int vy;

public void setLocation(int x, int y) {
if (x <0] y <0) {

t hrow new | |1 egal Argunent Exception();
}
this.x = x;
this.y =vy;
}
}
Inside the set Locat i on method:
= When t hi s. x is seen, the field X is used.

= When x is seen, the parameter x is used.

—

e - Copyright 2006 by Pearson Education

—

Multiple constructors

= [t is legal to have more than one constructor in a class.
= The constructors must accept different parameters.

public class Point {
private int Xx;
private int vy;

public Point() {

X = 0;
y = 0;
}
public Point(int initialX int initialY) {
X = initialX;
y = initial,
}

}

m

=

___ Copyright 2006 by Pearson Education 8

—

Multiple constructors w/ thi s

= One constructor can call another using t hi s
= We can also rename the parameters and use t hi s. field syntax.

public class Point {
private I nt X;
private int vy;

public Point() {
this(0, 0),; /] calls the (x, y) constructor

} \
public Point(int x, int y) {
this.x

i
X,
this.y Y,

m

=

___ Copyright 2006 by Pearson Education 9

—

.. . T, i
" Copyright 2'006.by Pearson Educa.ti_on ;

Static fields vs. fields

= static: Part of a class, rather than part of an object.
= Classes can have static fields.

« Unlike fields, static fields are not replicated into each object;
instead a single field is shared by all objects of that class.

= static field, general syntax:
private static <type> <name>,
or,

private static <type> <name> = <value>;

= Example:
private static int count = O

—

~ Copyright 2006 by Pearson Education 11

—

m

=

___ Copyright 2006 by Pearson Education 12

—

Static field example

= Count the number of Husky objects created:

public class Husky inplenents Critter {

/] count of Huskies created so far
private static int objectCount = O;

private I nt nunber; /|l each Husky has a nunber

public Husky() {
obj ect Count ++;
nunber = obj ect Count;

}

public String toString() {
return "I am Husky #" + nunber +
"out of " + objectCount;

}

Static methods

= static method: One that's part of a class, not part of an object.

= good places to put code related to a class, but not directly
related to each object's state

= shared by all objects of that class

= does not understand the implicit parameter;
therefore, cannot access fields directly

« if publ i c, can be called from inside or outside the class

= Declaration syntax: (same as we have seen before)

public static <return type> <name>(<params>) {
<statements>,

—

= P

~ Copyright 2006 by Pearson Education 13

—

m

=

___ Copyright 2006 by Pearson Education

—

Static method example 1

= Java's built-in Mat h class has code that looks like this:
public class Math {

public static int abs(int a) {
i1f (a >= 0) {
return a;
} else {
return -a;
}

}

public static int max(int a, int b) {
1f (a >= Db) {
return a;
} else {
return b;
}

}
}

14

Static method example 2

= Adding a static method to our Poi nt class:
public class Point {

[/ Converts a String such as "(5, -2)" to a Point.
[/ Pre: s nmust be in valid format.

public static Point parse(String s) {
S s.substring(1l, s.length() - 1); [// "5, -2"
S s.replaceAl (",", ""); [["5 -2"

/] break apart the tokens, convert to ints
Scanner scan = new Scanner (S);

' scan. nextint(); [l 5
scan. nextint(); [2

Point p = new Point(x, Yy);

)
i}

"7 Copyright 2006 by Pearson Education 15

—

=2)

-

—

Calling static methods, outside

= Static method call syntax (outside the class):

<class name>. <method name>(<values>) ;

= This is the syntax client code uses to call a static method.

= Examples:
| nt absVal = Math. max(5, 7);

Poi nt p3 = Point.parse("(-17, 52)");

- Copyright 2006 by Pearson Education

16

=2)

-

—

Calling static methods, inside

= Static method call syntax (inside the class):

<method name>(<values>) ;
= This is the syntax the class uses to call its own static method.

= Example:
public class Math {

[/ other nethods such as ceil, floor, abs, etc.
[/

public static int round(double d) {
I1f (d - (int) d >= 0.5) {
return ceil (d);
} else {
return fl oor(d);
}

}

- Copyright 2006 by Pearson Education

17

