
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 8:
Classes and Objects

2Copyright 2006 by Pearson Education

Lecture outline
� the keyword this

� multiple constructors

� static fields and methods in a class

3Copyright 2006 by Pearson Education

The keyword The keyword thisthis

reading: 8.7

4Copyright 2006 by Pearson Education

Using the keyword this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method/constructor is called

� this keyword, general syntax:

� To refer to a field:

this.<field name>

� To call a method:

this.<method name>(<parameters>);

� To call a constructor from another constructor:

this(<parameters>);

5Copyright 2006 by Pearson Education

Variable names and scope
� Usually it is illegal to have two variables in the same

scope with the same name.

� Recall: Point class's setLocation method:
� Params named newX and newY to be distinct from fields x and y

public class Point {
int x;
int y;
...
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}
x = newX;
y = newY;

}
}

6Copyright 2006 by Pearson Education

Variable shadowing
� However, a class's method can have a parameter whose

name is the same as one of the class's fields.

� Example:

// this is legal
public void setLocation(int x, int y) {

...
}

� Fields x and y are shadowed by parameters with same names.

� Any setLocation code that refers to x or y will use the

parameter, not the field.

� shadowed variable: A field that is "covered up" by a
parameter or local variable with the same name.

7Copyright 2006 by Pearson Education

Avoiding shadowing with this
� The keyword this prevents shadowing:

public class Point {
private int x;
private int y;

...

public void setLocation(int x, int y) {
if (x < 0 || y < 0) {

throw new IllegalArgumentException();
}
this.x = x;
this.y = y;

}
}

Inside the setLocation method:

� When this.x is seen, the field x is used.

� When x is seen, the parameter x is used.

8Copyright 2006 by Pearson Education

Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

9Copyright 2006 by Pearson Education

Multiple constructors w/ this
� One constructor can call another using this

� We can also rename the parameters and use this. field syntax.

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...
}

10Copyright 2006 by Pearson Education

Static fields / methodsStatic fields / methods

11Copyright 2006 by Pearson Education

Static fields vs. fields
� static: Part of a class, rather than part of an object.

� Classes can have static fields.

� Unlike fields, static fields are not replicated into each object;
instead a single field is shared by all objects of that class.

� static field, general syntax:

private static <type> <name>;

or,

private static <type> <name> = <value>;

� Example:

private static int count = 0;

12Copyright 2006 by Pearson Education

Static field example
� Count the number of Husky objects created:

public class Husky implements Critter {

// count of Huskies created so far
private static int objectCount = 0;

private int number; // each Husky has a number

public Husky() {
objectCount++;
number = objectCount;

}

...

public String toString() {
return "I am Husky #" + number +

"out of " + objectCount;
}

}

13Copyright 2006 by Pearson Education

Static methods
� static method: One that's part of a class, not part of an object.

� good places to put code related to a class, but not directly
related to each object's state

� shared by all objects of that class

� does not understand the implicit parameter;
therefore, cannot access fields directly

� if public, can be called from inside or outside the class

� Declaration syntax: (same as we have seen before)

public static <return type> <name>(<params>) {

<statements>;

}

14Copyright 2006 by Pearson Education

Static method example 1
� Java's built-in Math class has code that looks like this:

public class Math {
...

public static int abs(int a) {
if (a >= 0) {

return a;
} else {

return -a;
}

}

public static int max(int a, int b) {
if (a >= b) {

return a;
} else {

return b;
}

}
}

15Copyright 2006 by Pearson Education

Static method example 2
� Adding a static method to our Point class:

public class Point {
...

// Converts a String such as "(5, -2)" to a Point.
// Pre: s must be in valid format.

public static Point parse(String s) {
s = s.substring(1, s.length() - 1); // "5, -2"
s = s.replaceAll(",", ""); // "5 -2"

// break apart the tokens, convert to ints
Scanner scan = new Scanner(s);
int x = scan.nextInt(); // 5
int y = scan.nextInt(); // 2

Point p = new Point(x, y);
return p;

}
}

16Copyright 2006 by Pearson Education

Calling static methods, outside
� Static method call syntax (outside the class):

<class name>.<method name>(<values>);

� This is the syntax client code uses to call a static method.

� Examples:

int absVal = Math.max(5, 7);

Point p3 = Point.parse("(-17, 52)");

17Copyright 2006 by Pearson Education

Calling static methods, inside
� Static method call syntax (inside the class):

<method name>(<values>);

� This is the syntax the class uses to call its own static method.

� Example:

public class Math {

// other methods such as ceil, floor, abs, etc.
// ...

public static int round(double d) {
if (d - (int) d >= 0.5) {

return ceil(d);
} else {

return floor(d);
}

}
}

